Sleep duration varies as a function of glutamate and GABA in rat pontine reticular formation.

نویسندگان

  • Christopher J Watson
  • Ralph Lydic
  • Helen A Baghdoyan
چکیده

The oral part of the pontine reticular formation (PnO) is a component of the ascending reticular activating system and plays a role in the regulation of sleep and wakefulness. The PnO receives glutamatergic and GABAergic projections from many brain regions that regulate behavioral state. Indirect, pharmacological evidence has suggested that glutamatergic and GABAergic signaling within the PnO alters traits that characterize wakefulness and sleep. No previous studies have simultaneously measured endogenous glutamate and GABA from rat PnO in relation to sleep and wakefulness. The present study utilized in vivo microdialysis coupled on-line to capillary electrophoresis with laser-induced fluorescence to test the hypothesis that concentrations of glutamate and GABA in the PnO vary across the sleep/wake cycle. Concentrations of glutamate and GABA were significantly higher during wakefulness than during non-rapid eye movement sleep and rapid eye movement sleep. Regression analysis revealed that decreases in glutamate and GABA accounted for a significant portion of the variance in the duration of non-rapid eye movement sleep and rapid eye movement sleep episodes. These data provide novel support for the hypothesis that endogenous glutamate and GABA in the PnO contribute to the regulation of sleep duration.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evidence that wakefulness and REM sleep are controlled by a GABAergic pontine mechanism.

The pontine microinjection of the inhibitory neurotransmitter GABA and its agonist induced prolonged periods of wakefulness in unanesthetized, chronic cats. Conversely, the application of bicuculline, a GABA(A) antagonist, resulted in the occurrence of episodes of rapid eye movement (REM) sleep of long duration. Furthermore, administration of antisense oligonucleotides against glutamic acid dec...

متن کامل

Endogenous GABA levels in the pontine reticular formation are greater during wakefulness than during rapid eye movement sleep.

Studies using drugs that increase or decrease GABAergic transmission suggest that GABA in the pontine reticular formation (PRF) promotes wakefulness and inhibits rapid eye movement (REM) sleep. Cholinergic transmission in the PRF promotes REM sleep, and levels of endogenous acetylcholine (ACh) in the PRF are significantly greater during REM sleep than during wakefulness or non-REM (NREM) sleep....

متن کامل

GABAergic transmission in rat pontine reticular formation regulates the induction phase of anesthesia and modulates hyperalgesia caused by sleep deprivation.

The oral part of the pontine reticular formation (PnO) contributes to the regulation of sleep, anesthesia and pain. The role of PnO γ-aminobutyric acid (GABA) in modulating these states remains incompletely understood. The present study used time to loss and time to resumption of righting response (LoRR and RoRR) as surrogate measures of loss and resumption of consciousness. This study tested t...

متن کامل

Pontine reticular formation (PnO) administration of hypocretin-1 increases PnO GABA levels and wakefulness.

STUDY OBJECTIVES GABAergic transmission in the oral part of the pontine reticular formation (PnO) increases wakefulness. The hypothalamic peptide hypocretin-1 (orexin A) promotes wakefulness, and the PnO receives hypocretinergic input. The present study tested the hypothesis that PnO administration of hypocretin-1 increases PnO GABA levels and increases wakefulness. This study also tested the h...

متن کامل

CHOLINERGIC STIMULATION of the rostral part of the pontine reticular formation induces rapid-eye-movement (REM) sleep with atonia in intact animals, and lesions at this pontine site cause REM sleep without atonia.1,2,3 REM sleep without atonia

pontine reticular formation induces rapid-eye-movement (REM) sleep with atonia in intact animals, and lesions at this pontine site cause REM sleep without atonia.1,2,3 REM sleep without atonia is also induced by lesions in the medial medulla.4,5 In the decerebrate cat, both chemical and electrical stimulation delivered to the pontine inhibitory regions, as well as to portions of the medial medu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurochemistry

دوره 118 4  شماره 

صفحات  -

تاریخ انتشار 2011